
Impact Analysis through Regression Test Selection

S. Sushumna, K. Rakesh, G. HimaBindu

Computer Science Department, GITAM Institute of Technology,
 GITAM University, AP, INDIA

ABSTRACT: Change is unavoidable in software development. During
the entire lifecycle of a product, the environment changes; the needs of
customers or the market change and grow, and with them the
requirements on the system being developed. Impact analysis is then
defined as the process of identifying the potential consequences (side-
effects) of a change, and estimating what needs to be modified to
accomplish a change. The use of Unified Model Language (UML)
analysis/design models on large projects leads to a large number of
interdependent UML diagrams. As software systems evolve, those
diagrams undergo changes to, for instance, correct errors or address
changes in the requirements. Those changes can in turn lead to
subsequent changes to other elements in the UML diagrams. We
propose a UML model-based approach to impact analysis that can be
applied before any implementation of the changes, thus allowing an
early decision-making and change planning process. We present a
methodology and tool to support test selection from regression test suites
based on change analysis in object-oriented designs. We first verify that
the UML diagrams are consistent (consistency check). Then changes
between two different versions of a UML model are identified according
to a change taxonomy , and model elements that are directly or
indirectly impacted by those changes (i.e., may undergo changes) are
determined using formally defined impact analysis rules (written with
Object Constraint Language) and we propose a formal mapping
between design changes and a classification of regression test cases We
also present a prototype tools that provides automated support for our
impact analysis strategy and test selection from regression test suites,
that we then apply on a case study to validate both the implementation
and methodology.

Keywords: UML, regression test suite, impact analysis, consistency.

1. INTRODUCTION
The software systems have traditionally been decomposed
into subsystems top down according to their functionality.
The object-oriented approach describes the system in terms of
objects that make up the problem domain. Applying object-
oriented technology can lead to better system architectures,
and enforces a disciplined coding style. Rum Baugh states
that an object-oriented approach produces a clean, well-
understood design that is easier to test, maintain, and extend
than non-object-oriented designs because the object classes
provide a natural unit of modularity.
As time goes by, there are more demands for evolving
existing software. Software evolution refers to the on-going
enhancements of existing software systems, involving both
development and maintenance. As software ages and evolves,
the task of maintaining it becomes more complex and more
expensive, which is especially true for systems implemented
in object-oriented approach.
An update to existing system may need to know the potential
impacts. Potential impacts are identified by using UML
models in a very easy manner. As software systems evolve,
UML diagrams undergo changes. Such changes to a diagram
may lead to subsequent changes to other elements of the
model diagrams. The (potential) side effects of a change to
the unchanged diagrams should be automatically identified to

help (1) keep those diagrams up-to-date and consistent and
(2) assess the potential impact of changes on the system
models and code. This can in turn help predict the cost and
complexity of changes and help decide whether to implement
them in a new release.
In large software development teams, the above problems are
even more acute as diagrams may undergo changes in a
concurrent manner as different people may be involved in
those changes. Support is therefore required to help a team
assess the complexity of changes, identify their side effects,
and communicate that information to each of the affected
team members. To address the issues, we are focusing on
impact analysis of UML analysis or design models.
Most of the research on impact analysis is based on the
program code (implementation). However, in the context of
UML-based development, it becomes clear that the
complexity of changing Analysis and design models is also
very high.
While code-based impact analysis methods have the
advantage of identifying impacts in the final product of the
code, they require the implementation of these changes (or a
very precise implementation plan) before the impact analysis
can be performed. However, a UML model-based approach
to impact analysis looks at impacts to the system before the
implementation of such changes. A proper decision can
therefore be made before any detailed implementation of the
change is considered on whether to implement a particular
(set of) change(s) based on what design elements are likely to
get impacted and thus on the likely change cost.
The identification of model inconsistencies is important to
ensure that the impact analysis algorithms to get correct
results. To find inconsistency, it is beneficial to know what
causes the inconsistency and to decide how to fix it.
We do not believe that a tool can automatically resolve
inconsistencies because a tool cannot know whether an
inconsistency is tolerable or why it was caused. However, a
tool can be an assistant that provides the facts the designer
must consider. This work demonstrates that it is feasible to
locate all choices for fixing inconsistencies and to predict
their positive and negative side effects. However,
inconsistencies are not independent events. If a choice for
fixing one inconsistency inadvertently affects how to fix
another one then the designer should know about this
dependency. This work thus also demonstrates how to
identify dependencies among inconsistencies. No existing
work is able to identify all choices for fixing inconsistencies.
Also, to the best of our knowledge, no existing work is able
to identify dependencies and predict side effects.
UML/Analyzer tool relies on the UML Interface Wrapper

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4617

component. The infrastructure exposes the modeling data in
an UML-compliant fashion. It also employs a sophisticated
change detection mechanism. The latter is particularly
important because it notifies our tool of changes to the UML
model in real time while the designer uses the modeling tool.
The consistency rules themselves are hard coded into the
logic of the UML/Analyzer tool
In software development, most work on impact analysis
focused on source code. Some of these techniques
emphasized on static or dynamic program slicing. Other
techniques emphasized on traceability. Bohner-Arnold
discussed many of these approaches. To narrow down, what
part of the system to change and/or what part to
reanalyze/retest after the change. These approaches are very
powerful but do not readily apply to (UML) design models.
An approach for instant consistency checking of UML
models was fully automated and correctly decided what
consistency rules to re-evaluate when a model changed. We
used profiling data to establish a correlation among model
elements and consistency rules to decide what consistency
rules to reevaluate with changes.
Once we have verified that the diagrams of a UML design
model are consistent, and model element changes have been
detected, the next step is to automatically perform impact
analysis using impact analysis rules, that is, rules that
determine what model elements could be directly or
indirectly impacted by each model element change. The
original test set from which to select can contain both
functional and non-functional system test cases. From a UML
standpoint, functional test cases test complete use case
scenarios. .
The regression testing is to test a new version of a system so
as to verify that existing functionalities have not been
affected by new system features. Regression test selection is
the activity that consists in choosing, from an existing test set,
test cases that can and need to be rerun to ensure existing,
unmodified functionalities are still working correctly. The
main objective of selecting test cases that need to be rerun is
to identify regression test cases that exercise modified parts
of the system. To achieve this objective, we need to classify
test cases in an adequate manner so we classify test cases as
follows:
1.1 Obsolete:

A test case that cannot be executed on the new version of the
system as it is ‘invalid’ in that context. Classifying a test case
as obsolete may lead to either modifying the test case and
corresponding test driver or removing the test case from the
regression test suite altogether.
1.2 Retestable:

A test case is still valid but needs to be rerun for the
regression testing to be safe.
1.3 Reusable:

A test case that is still valid but does not need to be rerun to
ensure regression testing is safe.
We focused on automating regression test selection based on
architecture and design information represented with the

Unified Modeling Language (UML) and traceability
information linking the design to test cases.

2. REGRESSION TEST SELECTION TOOL (RTSTOOL)

2.1 Functionality:
The RTSTool main functionality (see Figure 1) is to classify
regression test cases as obsolete, re testable, and reusable,
based on the design information of the old and new system
versions and traceability information between the UML
design and test cases. Its inputs are the UML diagrams of two
system versions (XMI files produced by UML case tools)
along with the original regression test suite. It then compares
the two versions of each diagram type (class, use case, and
sequence), realize some consistency checks, and classifies
test cases. Future functionalities that can be easily added to
the current architecture include the generation of new
regression test cases based on the new versions of UML
diagrams. The reader is referred to for more details.
Furthermore, the results of the impact analysis (i.e., added,
deleted, and changed model elements) can easily be used for
other purposes than regression test selection, e.g., to assess
the effort of producing the new version or to make a decision
on whether to include a change in the next version. For the
sake of brevity we do not present the use case model of the
tool, though we will refer to some specific use cases in the
remainder of the text.

Figure 1: RTSTool Overview

2.2 Test Cases and Traceability
We describe here how the traceability between test cases and
sequence diagrams is represented and implemented.
2.2.1 Representation of Test Cases
Any test case is associated with a sequence (ordered set) of
triplets: (action name, source classifier name, target classifier
name). It specifies the sequence of actions resulting from a
test case. In the test driver, a functional test case will consist
of operation invocations, signals being sent and object
creations as well as destructions, when the language permits.
All the messages to boundary classes will directly or
indirectly trigger subsequent actions so as to complete a use
case scenario. We associate the complete action sequences to
test cases as determining changes in non-boundary actions

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4618

will be necessary to safely classify test cases as reusable or re
testable.
2.2.2 Representation of Sequence Diagrams
In the same way as the test sequences, messages in sequence
diagrams are triplets (message label, source classifier name,
target classifier name). However, the information about
messages is more complete as, in addition to action names,
we have possible arguments, guard condition and iteration
expressions in message labels. Furthermore, in order to
represent every possible message sequences in sequence
diagrams, each sequence diagram is represented using a
regular expression whose alphabet is composed of the above
triplets. This facilitates automation in our algorithms since we
can then easily check whether a test case is a legal sequence
of a regular expression (i.e., a sequence diagram), and
therefore whether a test case can be executed given the design
described by a sequence diagram.
2.2.3 Traceability
To automate test selection, we need to have traceability
between the UML design and regression test cases, so that we
can determine the effect of design changes on those test
cases. Traceability is simply handled by the association
between test cases and sequence diagrams, each test case
testing a use case scenario. We therefore implement
traceability as a mapping between sequence diagram
scenarios and test cases. A test case exercises, for each use
case it executes, only one scenario but one scenario can be
exercised by several test cases.
More precisely, in order to identify which sequence diagram
is triggered by a particular test case we first extract from the
test case sequence of triplets the ones whose target classifier
is a boundary class, and thus form the sequence of actions on
boundary classes. We then have to find the sequence diagram
with the same sequence of actions on the same boundary
classes. Since a test case may be composed of a sequence of
different sequence diagrams we need to repeat this matching
until we have found the complete sequence of sequence
diagrams which this test case exercises.
2.3 Architecture
We first provide the design goals that have driven the
definition of the architecture and then the architecture is
presented in terms of UML packages and their dependencies.
2.3.1 Design Goals
They are clearly identified so as to refer to them in the next
section:
 DG1: The tool must be independent of any specific UML

case tool.
 DG2: To refine the test case classification, we should

consider making use of additional UML diagrams, e.g.,
state charts.

 DG3: We want to limit the impact of future changes to
the test case representation, the XMI standard, and the
UML standard.

2.3.2 Packages
The RTSTool architecture is made of seven packages (see
Figure 2), four of them being of particular interest as they
contain classes that implement the identification of changes
in class, use case, and sequence diagrams and their impact on
regression test cases: i.e., RTSTool, Class Diagram, Use Case
Diagram, and Regression Test Suite. The package RTSTool
contains the class that starts up the system (main) and the
classes performing the consistency checks across diagrams.
The last three packages, as indicated by their name,
encapsulate classes and operations performed on class
diagrams, use case diagrams (and their corresponding
sequence diagrams), and the regression test suite.
Three additional packages (i.e., RTSTool GUI, Text Parser,
and XMIParser) describe the Graphical User Interface and
parsers that are able to read XMI files (containing the
information on UML models) and text files (containing test
cases). Note that the architecture described in Figure 2 is not
complete to avoid cluttering: It only shows public classes in
each package and some associations have been omitted.
The ClassDiagramChanges class is responsible for comparing
two class diagram versions (association class with class
ClassDiagram) loaded from two XMI files produced by a
UML case tool (Figure 2). The Class Diagram class is
associated (Figure 3) with several classes (Class instances),
themselves associated with several attributes and operations
(Operation), and possibly with parameters (Formal
Parameter). Relationships between classes in the class
diagram are also represented (class Relationship). The access
Operations association describes the mapping between
attributes and the operations that “use” them. Recall that this
mapping can be done using operations’ contracts, which
specify which attributes are (potentially) read or updated.
Note that these classes and relationships are an adaptation of
the UML class diagram Meta model. Following the
definitions in, classes in Figures 1, 2 and 3 are classified as
either Control or Entity. Control classes are responsible for
realizing a use case by invoking the right sequence of
operations (e.g., ClassDiagramChanges realizes the
CompareClassDiagramUsecase) and entity classes are
repository classes modeling application domain entities. In
terms of attributes, all entity classes have a name, and can be
further defined by a version (i.e., class ClassDiagram) and a
type (classes Operation, Attribute, and Formal Parameter).
From two versions of a class diagram, the Class Diagram
Changes class produces the sets of added, deleted and
changed attributes, operations and classes. This information
is then used in the RTSTool and Regression Test Suite
packages.

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4619

Figure 2 : Architecture of the RTSTool (simplified8)

Similarly, the UseCaseDiagramChanges class
(UseCaseDiagram package) is responsible for comparing two
versions of a use case diagram, each use case diagram (class
UseCaseDiagram) being associated with several use cases
(class UseCase). Relationships between use cases are also
accounted for (association class UseCaseRelation). Since
each use case corresponds to one sequence diagram (attribute
sequences in UseCase is a regular expression representing the
possible message sequences in the sequence diagram), the

Use Case class is associated with messages (class Message),
i.e., the messages triggered in the sequence diagram (see
Figure 4). These classes and relationships are also an
adaptation of the UML use case and sequence diagram Meta
models. From two versions of a use case diagram, the
UseCaseDiagramChanges class produces the sets of added,
deleted and changed messages and use cases. This
information is then used in the RTSTool and
RegressionTestSelection packages.

Figure 3: Class Diagram Package

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4620

Figure 4 – Use Case Diagram Package

The RegressionTestSuite package is responsible for loading
(class RegressionTestSuite uses class Test Suite Parser in
package Text Parser), storing (class TestCase) and classifying
the different test cases (association class
TestCaseClassification), using the information provided by
the Class Diagram and the UseCaseDiagram packages (see
Figure 2). Class RegressionTestSuite generates the three

different sets of test cases defined in previous sections:
obsolete, re testable, reusable (see Figure 5). Note that, to
compare test cases and sequence diagrams, test cases and
sequence diagrams are represented as sequence of messages
and regular expressions. Classes Message and Argument are
therefore reused from package UseCaseDiagram.

Figure 5 – Regression Test Suite Package

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4621

Figure 6: Use case diagram for the ATM case study

If we now make the mapping between our architecture and
our original design goals explicit, we see that:

 DG1 is simply achieved by using XMI as a data
interchange format.

 DG2 is achieved as new UML diagrams will
correspond to new packages, which will be
responsible of identifying changes on the new
diagrams and letting other packages know about
implications on changes in class diagrams and
sequence diagrams.

 DG3 is achieved by ensuring that representations of
UML class diagrams and test suites are encapsulated
within their respective packages and unknown to
other packages.

2.3.3 Technical Features
The RTSTool uses an object-oriented database management
system to store the different versions of UML models and test
cases, thus allowing the reuse of previously loaded diagrams
or test cases. As the information stored is complex and can be
voluminous, it is important to use a database management
system (DBMS). An object-oriented DBMS is a natural
choice here as the database schema can match our class
diagram and as performance, which is the factor that usually
favours the use of relational DBMS, is not an issue with the
volume of data we are commonly handling.
The XMI parser embedded into the RTSTool uses the SUN’s
Java API for XML Processing (eXtensible Markup
Language). This package provides classes and operations that
enable applications to parse and transform XML documents,
and thus XMI documents, using the Document Object Model

(DOM). DOM specifies a tree-based representation for XML
documents, which is easy to navigate.
The RTSTool is implemented with Java (Java 2 Platform,
Standard Edition version 1.49)

3. CASE STUDY

In this section we apply our methodology, using the
RTSTool, we could define a variety of changes so as to make
the study more diverse and interesting. We first describe the
system and then discuss the changes that were performed and
present the results of the regression test selection.
3.1 An Automated Teller Machine System
The case study is an Automated Teller Machine (ATM)
system. The ATM design model contains 20 classes, 74
operations, 31 attributes and 15 use cases. The ATM’s main
function is to perform transactions based on the user’s inputs.
Four types of transactions can be carried out – Deposit,
Withdraw, Transfer and Inquiry. What is specific to the use
case diagram for the ATM is that all of the use cases, except
for two of them, depend on one main use case,
doTransaction. All the other use cases are either inclusions or
extensions of doTransaction. This main use case describes the
details of how the system performs transactions. The two
other use cases describe the start up and shut down
procedures of the ATM. The test set for the system contains
30 functional test cases which were developed using the
methodology. Most test cases test a different transaction,
combination of transactions or error conditions which may
arise when performing a transaction. However almost all of
these test cases execute the same main high-level use case,
doTransaction, therefore we can already foresee that if there

ATM StartUp

operator

ATM ShutOff

Customer Do Transaction

Cancel

<<extend>>

card insert

GetPIN

Perform Transaction

AskingDoAnother

perform Transac

performWithdra

performInquiry

performDeposit

PrintReciept

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4622

is a change to doTransaction all these test cases will be
classified as re-testable. Two test cases exercise the start up
and shut down procedures of the ATM.
Four different logical changes were performed from this
original design, and we present them, as well as the result in
terms of regression test selection, in the following sub-
sections.
3.1.1 First logical change (version 2 of the ATM)
Description:
The first logical change has to do with how many times a user
could enter an incorrect PIN number. In the original system
there was no limit to the number of times a customer could
enter an incorrect PIN. In the new version a user has only
three attempts to enter a valid PIN before their card is
retained by the system. This logical change translates into 1
new attribute named numOfTries in the ATM class which
keeps track of how many times a customer has entered the
PIN. Operation getPIN() in class ATM has a new pre-
condition pertaining to the value of numOfTries. Three
operations are added to the ATM class: resetNumTries(),
incrementNumTries() and getNumTries(). Operation
displayRetainCard() is added to the Display class. Each of
these new operations appears exactly once on the sequence
diagrams. resetNumTries() is added to the CardInsert use
case and causes the operation which called it, getCardNum()
(in class ATM), to be classified as changed increment
NumTries() is added to the GetPIN use case and
getNumTries() and displayRetainCard() are added to the
doTransaction use case. getNumTries() and
displayRetainCard() are both called by the same operation,
doTrans() (in class ATM), which is therefore classified as
changed. The RTSTool generated the results in Table 1.

Total
(V.1)

Added Changed Deleted
Total
(V 2)

Attributes 31 1 0 0 32
Operations 74 4 3 0 78
Classes 20 0 2 0 20
Use cases 15 0 3 0 15

Table 1 – Impact Analysis Results using RTSTool for the
ATM (first logical change)

Regression Test Selection:
As shown in Table 2, of the 30 test cases in this study, 28
were classified as retestable and only 2 were reusable. The
reason for this lies in the type of change that was made. The
28 test cases that are retestable all contain a call to the
operation getCardNum() since all of these test cases explore
situations where the user wants to perform a transaction, and
in order to perform a transaction the user must first enter a
card into the machine. Although the change description has to
do with how many times the PIN is entered the GetPIN use
case is not the only one affected: CardInsert and
doTransaction are also affected by these changes and it is
actually the change to CardInsert that causes all of the 28 test
case to be retestable. The 2 test cases that are reusable are the
ones that test the start up and shut down procedures and do

not involve the user putting a card in the machine and
entering a PIN number.

Test Cases
Amount Obsolete Re testable Re usable

30 0 28 2
Table 2 – Regression Test Selection Results using RTSTool

(first logical change)

3.1.2 Second logical change (version 3 of the ATM)
Description:
The second logical change imposes some extra restrictions on
the savings type of account. In the original system savings
and cheque accounts were identical in terms of which
transactions could be performed on them. In the new version
a user cannot withdraw money directly from an account of
type savings. Therefore in order to remove their money from
a savings account they must first transfer the money to a
chequing account. This translates into the following changes:
The Constants class is changed because an attribute,
INVALID_TRANS has been added. INVALID_TRANS is
an error code representing the situation when a customer
attempts to perform a withdrawal from a savings account.
Class Withdrawal is changed because its operation
doTransaction() which performs a withdrawal transaction has
a changed post condition. The doTransaction use case is
changed because the operation displayErrorMsg() has been
added. Operation doTrans() in the doTransaction use case,
which calls displayErrorMsg() is classified as changed. The
RTSTool gives the results in Table 3.

Total
(V.1)

Added Changed Deleted
Total
(V 2)

Attributes 31 1 0 0 32
Operations 74 0 2 0 74

Classes 20 0 3 0 20
Use cases 15 0 1 0 15

Table 3 – Impact Analysis Results using RTSTool for the
ATM (second logical change)

Regression Test Selection:
When first reading the change description one would come to
the conclusion that only test cases involving a withdrawal
transaction would need to be retestable. However since this
change resulted in a new error condition which is checked
after each transaction, all 25 test cases which contain a call to
doTrans() are considered re testable (see Table 4). Operation
doTrans() represents the execution of a transaction. The 5 test
cases which are reusable explore the following situations:
start-up, shutdown, card not readable, user presses the cancel
button when the PIN is requested and the user presses the
cancel button when the transaction type is requested. In these
5 test cases operation doTrans() is never called which is why
they are classified as reusable.

Test Cases
Amount Obsolete Re testable Re usable

30 0 25 5
Table 4 – Regression Test Selection Results using RTSTool

(second logical change)

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4623

3.1.3Third logical change (version 4 of the ATM)
Description:
The third logical change has to do with the cash dispenser.
The current dispenser only holds twenty dollar bills –
therefore all withdrawals need to be in multiples of twenty.
The new dispenser will be able to handle twenty and five
dollar bills. This results in 4 new operations to the
CashDispenser class, each of which appears once in the
updated sequence diagrams: numberOfFives(),
numberOfTwenties(), dispenseFives() and
dispenseTwenties(). They all appear in the doTransaction use
case (i.e., in the corresponding sequence diagram) and are all
called by the same operation, i.e., dispenseCash() (in class
CashDispenser), which is therefore considered changed. The
results from the RTSTool are presented in Table 5.

Total
(V.1)

Added Changed Deleted
Total (V

2)
Attributes 31 0 0 0 31
Operations 74 4 1 0 78

Classes 20 0 1 0 20
Use cases 15 0 1 0 15

Table 5 – Impact Analysis Results using RTSTool for the
CCS (third logical change)

Regression Test Selection:
There are only 9 test cases which call the operation
dispenseCash(). It is these 9 test cases that are classified as
retestable (see Table 6). The other 19 test cases either
perform startup, shutdown, a transaction other than
withdrawal or a withdrawal in which an error occurs before
the cash is dispensed. In contrast with the second change this
version of the system behaves as one would intuitively think:
A change has been made to the way a withdrawal transaction
is executed and only the test cases which exercise the
corresponding behaviour need to be retested.

Test Cases
Amount Obsolete Re testable Re usable

30 0 9 21
Table 6 – Regression Test Selection Results using RTSTool

(third logical change)

4. CONCLUSION
In some cases, the number of reusable test cases represented a
large proportion (up to 100%): It seems to indicate that
substantial savings can be obtained, especially that the whole
process can be automated. However, the case studies have
shown that changes can have a widely variable impact on the
resulting system. Large numbers of test cases may be
obsolete, retestable, or reusable. In some cases the results are
intuitive; in others the RTSTool was useful to uncover
unexpected retestable test cases. But in general, we expect
such a technology to be even more useful for large systems,
involving many designers in diagram changes, when no one
person has a comprehensive understanding of all the use
cases and their design. In such a system, a manual impact
analysis would likely lead to errors, especially in a context
with typical project pressures.

REFERENCES
[1] S. Bennett, S. McRobb and R. Farmer, Object-Oriented Systems Analysis

And Design Using UML, McGraw-Hill, 2nd Ed., 2002.
[2] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling

Language User Guide, Addison Wesley, 1999.
[3] L. C. Briand and Y. Labiche, “A UML-Based Approach to System

Testing,” Software and Systems Modeling, vol. 1 (1), pp. 10-42,
Springer, 2002.

[4] L. C. Briand, Y. Labiche and L. O'Sullivan, “Impact Analysis and
Change Management of UML Models,” Proc. IEEE International
Conference on Software Maintenance, Amsterdam, The Netherlands,
22-26 September, 2003.

[5] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering -
Conquering Complex and Chalenging Systems, Prentice Hall, 2000.

[6] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. GilChrist, F. Hayes and
P. Jeremaes, Object-Oriented Development - The Fusion Method,
Object-Oriented Series, Prentice Hall Ed., 1994.

[7] M. J. Harrold, “Testing Evolving Software,” Journal of Systems and
Software, vol. 47 (2-3), pp. 173-181, 1999.

[8] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S.
Sinha and S. A. Spoon, “Regression Test Selection for Java Software,”
Proc. ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA'01), Tampa Bay, Florida,
USA, October 14-18, 2001.

[9] H. K. N. Leung and L. White, “Insights into Regression Testing,” Proc.
IEEE International Conference on Software Maintenance (ICSM), Los
Almitos, CA, pp. 60-69, October 16-19, 1989.

[10] H. K. N. Leung and L. J. White, “A Cost Model to Compare Regression
Test Strategies,” Proc. Conference on Software Maintenance, Sorrento,
Italy, pp. 201-208, October 15-17, 1991.

[11] P. Linz, An Introduction to Formal Language and Automata, Jones and
Bartlett, 2nd Ed., 1997.

[12] B. Meyer, “Design by Contracts,” IEEE Computer, vol. 25 (10), pp. 40-
52, 1992.

[13] R. Mitchell and J. McKim, Design by Contract, by Example, Addison-
Wesley, 2001.

[14] OMG, “Unified Modeling Language (UML),” Object Management
Group V1.4, www.omg.org/technology/uml/, 2001.

[15] OMG, XML Metadata Interchange (XMI),
www.omg.org/technology/documents/ formal/xmi.htm, 2001

[16] Poet, POET Object Server Suite, the Essential Database for Java and
C++ Objects, 2000.

[17] G. Rothermel and M. J. Harrold, “Analysing Regression Test Selection
Techniques,” IEEE Transactions on Software Engineering, vol. 22 (8),
pp. 529-551, 1996.

AUTHERS BIOGRAPHY

 S. Sushumna is pursuing M.Tech in Software
Engineering from GITAM University, Visakhapatnam,
INDIA. My research areas include change
management, software process models, software
coupling and cohesion.

 K. Rakesh is pursuing M.Tech in Software
Engineering from GITAM University, Visakhapatnam,
INDIA. My research areas include change
management, Software cost estimation, software
coupling and cohesion.

 G. HimaBindu Asst. Professor in the Department of
CSE at GITAM University, Visakhapatnam, INDIA.

S. Sushumna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4617 - 4624

4624

